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We find that the Boltzmann weight of the three-dimensional Baxter-Bazhanov 
model is dependent on four spin variables which are the linear combinations of 
the spins on the corner sites of the cube, and the Wu-Kadanoff-Wegner duality 
between the cube- and vertex-type tetrahedron equations is obtained explicitly 
for the Baxter-Bazhanov model. Then a three-dimensional vertex model is 
obtained by considering the symmetry property of the weight function, which 
corresponds to the three-dimensional Baxter-Bazhanov model. The vertex-type 
weight function is parametrized as the dihedral angles between the rapidity 
planes connected with the cube. We write down the symmetry relations of the 
weight functions under the actions of the symmetry group G of the cube. The 
six angles with a constraint condition appearing in the tetrahedron equation can 
be regarded as the six spectra connected with the six spaces in which the vertex- 
type tetrahedron equation is defined. 
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1. I N T R O D U C T I O N  

T h r e e - d i m e n s ~ o n a l  i n t e g r a b l e  m o d e l s  in  s t a t i s t i ca l  m e c h a n i c s  h a v e  a t t r a c t e d  

m u c h  a t t e n t i o n  recent ly .  As a f ac to r i zed  s c a t t e r i n g  t h e o r y  in 2 + 1 d i m e n -  

s ions,  Z a m o l o d c h i k o v ' s  m o d e l  was  f o r m u l a t e d  in 1980 t~) w i t h  N =  2, w h e r e  
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he conjectured that it satisfied the tetrahedron equation, which is also the 
condition that the transfer matrices of the three-dimensional lattice models 
commute in statistical mechanics, t2~ This equation was verified by Baxter in 
1983/3) The Wu-Kadanoff-Wegner duality t4"5~ found in the early 1970s 
was applied first to this lattice model by Baxter for N = 2, who commented 
on some subtleties with the above duality. In 1992, Bazhanov and Baxter t6) 
generalized the two-state Zamolodchikov model to arbitrary states. We call 
this the Baxter-Bazhanov model. It is an interaction-round-a-cube model 
with N>~2. Kashaev et alJ 7) showed that the Boltzmann weights of the 
Baxter-Bazhanov model satisfy the cube-type tetrahedron equation, by 
introducing the star-square relation for which a connection was found tS) 
with the chiral Potts model. The restricted star-triangle relation and the 
star-star relation of this model have been discussed in detail in refs. 9-12. 
They connected with the quantum dilogarithm (]3~ and the shift operator in 
the discrete space-time picture.(14" 15 

A new series of three-dimensional integrable lattice models was pre- 
sented by Mangazeev et al., ~16) the weight functions of which satisfy the 
modified tetrahedron equationJ tT) Recently, Cerchiai et alJ 5~ studied the 
Baxter-Bazhanov model from the point of view of link theory and gave 
the representations of the braid group if some suitable spectral limits 
are taken. 

Korepanov ~'s~ obtained the solution of the vertex tetrahedron equa- 
tion with the spin variables taking N--2 ,  which leads to a commuting 
family of transfermatrices. With respect to the scattering process, Hietarinta 
discussed the three corresponding tetrahedron equations in which the 
Frenkel-Moore equation was fitted ~9"2~ and proposed another vertex 
solution with 16 nonzero weightsJ 2~ The discrete symmetry groups of 
vertex models were studied by Boukraa et al. c5~1 As a generalization of 
Hietarinta's solution of the tetrahedron equation Mangazeev et al. ~'-2) 

proposed another N-state spin integrable model on a three-dimensional lat- 
tice and this model can be reformulated as a vertex model. The weight 
function of this model can be obtained from the Baxter-Bazhanov model 
by taking appropriate limits. ~-'3) In principle, many of the solved problems 
can be formulated as vertex models and the interaction-round-a-cube 
(IRC) model is always equivalent to an N4-state vertex model by using a 
straightforward generalization of the arguments of Perk and Wu. ~24~ 
Au-Yang and Perk ~251 claim this equivalence to be one of the basic ingre- 
dients in the original construction of the integrable chiral Potts model. This 
mapping is a one-to-one mapping and preserves all integrability conditions 
trivially at the expense of numerous zero vertex weights. In this paper, the 
more special Wu-Kadanoff-Wegner equivalence explicitly uses four Z N  

symmetries of the model, but is not one-to-one. However, the resulting 
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vertex weights are simpler than the IRC weights. Even though there are 
subleties due to the N4-to-1 mapping, all integrability conditions are kept. 
It appears that the Protvino group had some oversights in their earlier 
work, but their new work (26~ and the current work independently come to 
similar conclusions. 

This paper is organized as follows. In Section 2 we give a brief descrip- 
tion of the Baxter-Bazhanov model and the duality between the cube- and 
the vertex-type tetrahadron equations. The weight functions of the Baxter- 
Bazhanov model are written as vertex forms in Section 3 and some sym- 
metry properties are given for this three-dimensional model. Then the 
duality is obtained explicitly for the Baxter-Bazhanov model. By using the 
symmetry properties of the weight functions we get the vertex-type weight 
functions for the three-dimensional vertex model. It should be noted that 
the weight functions of the model proposed by Mangazeev et al. can be 
obtained from these vertex-type weight functions when we take the limit of 
the spectrum and use the star-triangle relation of the Baxter-Bazhanov 
model. In Section 4 the vertex-type weight functions are parametrized as 
the angles of spherical triangles by using the methods of spherical tri- 
gonometry parametrization. These angles are the dihedral angles between 
the "rapidity planes" passing the cubes, as in the Zamolochikov model. In 
this way, the spectra appearing in the vertex-type tetrahedron equation can 
be denoted by these angles and they connect with the spaces in which the 
vertex-type tetrahedron equation is defined. In Section 5 we discuss the 
constraint conditions imposed on the tetrahedron equations from the point 
of view of angle variables. Then the symmetry properties of the vertex-type 
weight functions are discussed. They are symmetrical about the transforma- 
tions of the group G consisting of various rotations, reflections, and their 
combinations of the cube. Finally, some conclusions and remarks are given. 

2. BAXTER-BAZHANOV MODEL AND DUALITY BETWEEN 
CUBE- AND VERTEX-TYPE TETRAHEDRON EQUATIONS 

2.1. Three-Dimensional  Baxter-Bazhanov Model  

As is well known, the Baxter-Bazhanov model is an interaction- 
round-a-cube ~IRC) model. Its partition function reads 

Z =  ~' I-[ W(alefglbcdlh)  (1) 
spins cubes 

where W(a [ efg [ bcd[ h) is the Boltzmann weight of the spin configuration 
a ..... h (see Fig. 1) and these spin variables take their values in ZN with 
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Fig. 1. 

d 
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Arrangements of the spins a,..., h on the corner sites and the spin a in the center of 
an elementary cube of the simple cubic lattice .L,e. 

N >/2. The product  is over all elementary cubes in the simple cubic lattice 
f t .  The Boltzmann weight W(a I efg I bcdl h) can be written as 

W( a I efg ] bcd l h) 

w(v4/v3, e -  c -  d +  h) s(g, a - g  - f  + b) 

w(v4/v3, a - g - - f +  b) s ( c - h ,  h - d) 

N - - I  x ~. w ( v 3 ' d - h - a ) s ( a ' a ) s ( a ' h ) ~  w(v2, b - - f  +a) 
a = o  w(v , ,g - -a  + a) W(V4, e ~--~---~ s-~ c-)s--~ ~ Jo 

(2) 

with the relation O)VlV4=v2v3; the subscript 0 on the curly brackets 
indicates that  the expression inside is divided by itself with the zero exterior 
spins, and we have used the notat ions 

W(V' ~/) = [ZJ(v)]a 
a 
1-[ ( 1 -  coJv) - I ,  zl(v) = ( 1 - v N )  '/~ (3) 

w(v, O) j= 1 

co = exp(2rti/N), co 1/2 = exp(rti/N), s(a, b) = co ~b (4) 

Note  that  the Bol tzmann weight function (2) describes a very special type 
of interaction of eight spins a round the cube as in Fig. 1. There are three- 
spin interactions on the triangles (a, g, a), (b, f ,  a), (d, h, a), and (c, e, a),  
described by w(v, a) or by 1/w(v, a), and two-spin interactions s(a, a), 
s(a, c), s(a, h), and s (a , f )  associated with the edges linking tr to a, c , f ,  and 
h in the curly brackets. The factors before the curly brackets denote the 
spin interactions in the planes (a, f ,  b, g) and (c, e, d, h). After introducing 
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an overall normalization and some additional multipliers, ~1~ we express 
the weight function of the Baxter-Bazhanov model as 

W A  a $ efg I bcd l h) 

r V W(X14X23' X12X34' X13X24 [ a + d,  e +f)] 1/2 

= W  ag - W(XI4X23 , X12X34 , XI3X24 [ g +  h, c--+~J 

[ W(X 4, X34, X3 [ e + h, d +  c) ] 1/2 
X 

[. W(X4, X34 , X 3 ] a + b , f + g )  

[ w(x~, xl~, xl [ e+g,  a + c ) ]  1/'- COlaZ+gb+oh)/-" • . . . .  __ 
Lw(x , , x :_ , x .  I d + b , f  +h) co ' ' a + ' ~ + ' ~  J 
f ,,-, w(x3, x l 3 , x l l d ,  h + a )  w(x4, x,4, x21a, g + a )  

• { o ~ w ( x , , x , , , x ,  le,~+,~)w(xdo~,x,_,,x~_l.f ,b+~)Jo (5) 

It satisfies the tetrahedron equation, which ensures the commutativity of 
the layer-to-layer transfer matrices. Here we have used 

w(x, y, z I k, l) = w(x, y, z I k - 1) qS(l) 
! 

Y 7 k, I s  ZN w(x, y , z  [ l )= I-[ _ x w j ,  
j = l -  

with the notation 

(6) 

xU + y N = z  N, ~ ( l ) = o J  (t+N)/2, x ~ - x ~ = x  N (7) 

for i < j and i, j = 1, 2, 3, 4. 

2.2. Dual i ty  B e t w e e n  Cube- and V e r t e x - T y p e  Tet rahedron 
Equat ions 

The Boltzmann weight function W in Eq. (5) satisfies the following 
tetrahedron equationt7): 

W(a4l c,~clc3 [ blb3b2 I d) W'(cl [ b2a3bl I c4dc6 l b4) 
d 

x W"(bl [dc4c3la2b3b4lcs) W"'(d[ b2b4b 3 c5c2c61ai) 

= ~ W"(bl 1clc4c3 l a2a4a3ld) W"(cl I b2a3a4ldc2c6lal)  
d 

x W'(a4 [ czdc3 [ azb3al I cs) W(d[ ala3a2 [ c4c5c6 [ b4) (8) 
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where W, W', W", and W" are four sets of Boltzmann weights. With 
respect to the scattering process and using particle labeling schemes, 
Hietarinta ~2~ wrote down the vertex-type tetrahedron equation ~s'2~ 

~ k l ,  k2, k3 ntjl  k4 k5 R. j~j4  k6 p m  J3J5J6 
~ .  ~ i l , i2 ,  i3 1~ kli4i5 1~2k4i6 ~" k3ksk6 

kl, k2, k3, 
k4, k5, k6 

R,,,k3. ks. k6R,,k,, k4A p,kl J4Js RJIAJ3 (9) 
: 2 i3. i5, i6 i2/4 k6 ~" il k4 kS kj k2 k3 

kh k2, k3, 
k4, ks, k~ 

We call relation (8) the cube-type tetrahedron equation. Just as with 
the Wu-Kadanoff-Wegner duality in the Yang-Baxter equation, the tetra- 
hedron analog of the Wu-Kadanoff-Wegner  duality between the above 
two types of tetrahedron equations can be constructed by 

W(a [ efg l bcd l 1",~ -l~+p/,+~b+~f.~,+a~+rg+~b,~d+P~+yr --, - -  ..r ad+ae+.ya+jf,  atf+fla+yg+t~b (10) 

where the constants ct, fl, y, fi are the parameters of the map 
F~: W =  R o F~,. 12~) There are two nontrivial results about the map F,,: 

R/mn __ ,~k - 0 unless od + fli = tim + ctj and ym + flj = fin + yk ( 11 ) 

for the case of ~y = tiff, and 

Rlmn Uk = 0  unless m = i + k  and j = l + n  (12) 

for the case of ~ = ? = 0 and fl = - 6  = 1. The solution presented in ref. 22 
corresponds to the latter, which can be obtained from the Boltzmann 
weight of the Baxter-Bazhanov model by taking appropriate limitsJ TM In 
the following section the map F~, will be obtained for the three-dimensional 
Baxter-Bazhanov model. Then we get a three-dimensional vertex model 
which corresponds to the IRC model. 

3. T H R E E - D I M E N S I O N A L  V E R T E X  M O D E L  

In this section, some symmetry properties are found for the weight 
functions of the Baxter-Bazhanov model. We can interpret these properties 
as generalizations of the symmetry properties of the weight functions of the 
N =  2 Zamolodchikov model proposed by Baxter/3~ Then we get that the 
weight functions of Baxter-Bazhanov model are vertex-type weight func- 
tions and a three-dimensional vertex model is constructed. The map Fcv is 
given explicitly for this three-dimensional model. Six spectra exist in the 
vertex-type tetrahedron equation. They are the spectra connected with the 
six spaces in which the vertex-type tetrahedron equation is defined. 
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3.1. The Vertex-Type Boltzmann Weight 

Baxter ~) discussed in detail the duality between the Zamolodchikov 
plaquettes for the two-color model of the straight-string scattering theory (~) 
and the elementary cube with spins a, b ..... h taking their values ___ 1 on the 
corner sites for the IRC model in statistical mechanics. He wrote down the 
weight function W(a I efg I bcd I h) of the N = 2 Zamolodchikov model as 

cg, ae, df, bh 
l , V (a l e fg lbcd lh )=S  de, af, bg, ch (13) 

bf, ag, ce, dh 

where S is the three-string scattering amplitude. Baxter proved that it 
satisfies the tetrahedron equation, which is the factorizable condition of the 
(2+  1)-dimensional scattering theory in field theory and the integrable 
condition of the three-dimensional lattice model in statistical mechanics. 
The weight function W( a I efg I bcd l h) has the property 

W(a I efg I bcd l h) = IV( - a  I - e ,  - f ,  - g  I - b ,  - c ,  - d  l - h )  (14) 

Notice that the spins a ..... h take values + 1 in the above two relations. We 
know that the Baxter-Bazhanov model is the generalization of the N =  2 
Zamolodchikov model. Then a natural problem occurs. What is the 
generalization of the property (14) in the Baxter-Bazhanov model? By con- 
sidering the relations (6) and (7), we find that the weight function 
W(a I efg I bcd I h) of the Baxter-Bazhanov model, given in expression (5), 
has the symmetry properties 

W ( a l e f g l b c d l h ) = W ( a + _ _ l l e + _ l , f + _ l , g l b ,  c , d + l l h )  (15) 

W ( a l e f g l b c d l h ) = W ( a l e ,  f,g++_l lb++_l,c++_l, dlh++_l) (16) 

They correspond to the property (14) of the Zamolodchikov model when 
N = 2 .  Owing to these symmetry properties, the N 8 weight functions 
W(a I efg I bcd I h) of the Baxter-Bazhanov model reduce to N 6 ones with 
the degeneracy being N 2. This provides us with the possibility to construct 
the three-dimefisional vertex model from the Baxter-Bazhanov model due 
to the vertex-type Boltzmann weights mapping as R: 1 ~ 6 ~  cg in three 
dimensions. 

From expressions (2) and (5), we know that the Boltzmann weights of 
the Baxter-Bazhanov model map as IV.' 1~8--*cg, and the cube-type 
tetrahedron equation is defined on 1~ tS. The relations (11) and (12) mean 
that two labels of the vertex-type weight function R are determined from 

822/82/3-4-3 
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the other ones. What happens in the three-dimensional Baxter-Bazhanov 
model? We deal with this now. Set 

r l = d - h ,  r 2 = a - g ,  r 3 = e - c ,  r 4 = f - b ,  r s = g + h - b - c  (17) 

Using relation (6), we can change expression (5) into the form 

WAa I efg I bcd l h) 

[ W(XI4X23' X12X34, X13X2.__._~4 !_/'1 2 r._22 ~'~. r3  - -  r 4 q- rs) 
/ W(XI,X23, XI2X34, XlsX24 I rs) 

w(x4, x34, xs I rs-r l)  w(x2, xp, xl I ~ - r 2 ) ]  1/_, 
x w(x4, xs4, x3 I r~r4--)) w(x2, x12, xl I r l - r , ) J  

• 3~ w(xs,x13, x, l r i+a) w(x4, xz4, x21r2+a) ~ (18) 
t : ~ .  ~:r 'W(X., X~.> Xl I r3 + ~) w(xdo~, x~ ,  x~ I r .  + o')Jo 

where 

[co = ( - -  ) r5(0)112) r ~ + ~ " - r i r 3 - r l v 3 - r 3 r S - r 4 r $  [ (~(r l)- II~(lr2)] 1/2 
L ~(r3) ~(ra)J 

~(ri), 
property 

w(x,y, z i l )  w(z, col/2y, coxl --1) ~(1) = 1, I~Z:r 

we find for the weight function 

We(a I efg I bcdl h) 

=(_)k2(coVZ)k,k.,+,~,3+~,~ 3 [ W(X,, CO:-Xn, r I k,)  

w(x14x23, x12x34, xisx24 [ k4 - kl - k2 - k3) w(x4, x34, x3 ] ks)] I/2 
X W(XI4-"'~X23"--~XI2X34, XI3"'"~~25i ----k2~ w~x4T~34Z x---~lk4-----Z-~;; I d 

(19) 

i =  1, 2, 3, 4, are given in relation (7). By taking account of the 

(20) 

where 

{ :2w(x3, x,,, x, x,,, x21 
X W(X4, XI4, XI iks"FO')W(X3/O,),X23, X9 I k l+a)Jo  a N 

(21) 

k ] = r 4 - r l ,  k 2 = - r s ,  ka=r3--r l ,  k 4 = r 2 - r l  (22) 
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and we used the relation 

2b f  - a g  + gb.+ b h - - d h - d e - e a  + h 2 - b 2 - c 2  + 2 ( h - d ) ( b  + c - g - h )  

+ d 2 + (a + c)(e + g) - (b + d ) ( f  + h) + bd + e f  + c d -  eg - bc - f g  

= - b ~ - bc - bd + b f  + bg + 2bh - c 2 - cd + ce + cg + 2ch 

+ d ' - - d e - d f  + 2dg + ef - e g -  f g -  2gh-h  ~ 

= ki k2 + ki k3 + k2k3 (23) 

The factor (o9~/2) k~k2+k'-k3+k'k3 on the RHS terms of relation (21) is 
dependent on the spin variables k~, k2, k3,  which can be called the final 
states; ~) it is formed of three parts: one is the original factor 
(09i/2)gb+bh+Zyb--hd--de . . . . .  g and the other two come from the �9 factors 
in the prefactors and the summation. The weight function 
We(a  I e fg I bcd I h) is dependent on the four spin variables kt,  k2, k3, k4. 
The related spectral variables x~, x o. (1 ~< i < j  <~4) will be discussed in the 
next section. Furthermore, the Boltzmann weight of the Baxter-Bazhanov 
model can be reformulated as 

= ( - )J~(toLl~-)s,J~+J:J~+s,J, 

[ wlx,, i i w(x , x,,, is,)] 
x [ w(.,:,, co'i~x,,, ~ox~ 1 6) w(x,,.,:23, x,:x3~, x,3x2, I -J~) w(x~, x3,, x~ 17~)] 

w(x4, x14, xl I J3 + or) w(xUco, x~3, x21 J, + ~) Jo 

where the spin variables ii, i2, i3, Jl ,  J2, Ja satisfy the conditions i I + i2 = 
Ji +J2, i2 +i3=JE q-J3 and 

i I = a + c - - e - - g ,  i 2 = e + f - a - d ,  i 3 = a + b - f - g  
(25) 

Jm = f  + h - b - d ,  j 2 = b + c - g - h ,  j 3 = e + h - c - d  

In this way, we denote the weight function of the Baxter-Bazhanov 
model as a vertx weight function and the vertex-type spin variables 
il, i2, i 3 , j l , j 2 ~ j  3 are chosen by (25), which is not arbitrary. Here we 
regard i~, i2, i3 as  the initial states and j~, J2, J3 as the final states in space 
1, 2, 3, respectively/~) Then, in the terms on the LHS of the tetrahedron 
equation (8), the final states k~, k2, k3 defined by the weight function W 
are the same as the initial states in the first spaces defined by the weight 
functions W', W", W" with the use of the rules (25), respectively. The final 
states k 3, ks, k6 defined by the weight function W" are the same as the 
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initial states in the third spaces defined by W, W', W", respectively, on the 
RHS terms of the tetrahedron equation (8) by using the rules (25) . . . . .  
They are just the conditions of the duality between the cube-type 
tetrahedron equation and the vertex-type tetrahedron equation. Comparing 
with the relation (10), we known that the parameters of the map F,, are 
�9 = - f l = y = - g = - l .  Of course, we can make the transformations 
a - - , - a ,  b - - , - b  ..... h ~ - h  in (25). In this case, we have that 
c t = - f l = y = - g = l .  The expression (24) can be interpreted as the 
Boltzmann weight of a three-dimensional vertex model. The Boltzmann 
weight of the vertex model proposed in ref. 22 can be obtained when we set 
i 3 = j 3 = 0  and use the star-triangle relation of the Baxter-Bazhanov 
model.t'-3J 

The key point is that we can get the vertex-type weight function (24) 
due to the symmetry properties (15) and (16). It is surprising that the 
co~/2-factors in the weight function of the Baxter-Bazhanov model have the 
form co j,j'-+j'-j~ +J,J~. In this way, the spin variables in the weight function of 
the Baxter-Bazhanov model, including the prefactors, can be changed into 
the vertex-type spin variables i~, i2, i3, Ji,  J2, J3. And these prefactors are 
very important for ensuring the weight function symmetry under the action 
of the group G of all symmetry transformations of a three-dimensional 
cube t'~ and were useful when Kashaev et al. proved the tetrahedron 
equation of the Baxter-Bazhanov model. They are also necessary for the 
symmetrical vertex-type weight function RJ)?:! ~ 

tl  t2 t3 

3.2. The Spectral Parameters in the Weight Function 

From the symmetry properties of the Boltzmann weights of the 
Baxter-Bazhanov model, we have the relation 

{,~z,,,w(x3'x'3' x' l a + a) w(x4' ~ x21a + c) s(a' n ) ~ 

W(X4, X3.4, x 3 1 c - d )  

= w(x4, x34, x3 I b - a )  s(a, n) 

f W(X4XI3, Xl X34, X3XI4 I a - -  a + b + n) w(x ,  3, X34 , X24 I 0") S(O', d) 

(26) 

where a, b, c, d, ~, n ~ Z u .  17" ~1 By using the above relation we can write the 
vertex-type weight function (24) as 
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R.6f!, 111213 

= ( - )J: ( e o ' P - ) J ,  J: + J-' J, +J,  J, 

w(x,, w'/Zx,2, coxz I J,) w(x,4x,3, x,2x34, x,3x24 [ -i,) w(x4, x34, x~ I i3)] t/_, 
x ,Tx,7 o,',-'.~,_,, o,.,-,_ I;,)wc,c,,x:,,  x,:.,-,,, x,,x_,4 i -a=)w(x,,  x,,,.,-, i ~ j  ' 

{ ~Z W(X4XI3'XIX34'X3X|4[~-I-J2"JC-J3) I'9(X23'X34'X34]-O')'~'S(-~'{7)J')~ 
X ~ ~r W(X13------S,(.OX34----~,-f.OX-~4]g_t_j2)W(X4X23, X2-~x4, X3X24 I~+i,) J o  

(27) 

Set 

X 2 3  x l  x4 z, x13 z,_ = - -  (28) 
U =  / ) = - - ,  Z = - - ,  Z I =  ) ) 

COX 2 X 3 Z 2 O-)X 14 X 2 4  

The  B o l t z m a n n  weight  of  the t h r e e - d i m e n s i o n a l  ver tex  m o d e l  shown  in 
Fig.  2 has  the  fo rm 

\ J l J2 J3 R(bl, Z, VJ i l i 2 i 3  

= (__)j2((DI/2)jlJ2+j2j3+jlj3 IW( u, Jl )W(Z2/((OZI ), --i,_)w(v, i3)] 1/2 
w(u, il) W(Zz/(Cozl), --J2) w(v, J3) l  

x { ~. w(covz,, o ' + j 2 + J 3 )  w(z2, a) s(~r,j~)~ (29) 

#~z, )v(zl, a+j2) w(vz2, o ' + i  3) J0 

ia 

b g 

J2~ 
i 
I 

i I 

il ~- "'~ "L Z ~ . . . .  

! 

C - -- .al,. 

e 

m j l  

d 

Fig. 2. 

.73 

The Boltzmann weight of the three-dimensional vertex model corresponding to the 
IRC model. 
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J, 

k5 

i8 

o I 
i | 

i 
03 

k4 I k3 

i 0.1 

J~ 

0~ 

Fig. 3. 

s 
. . . .  i-:-~, : -  

i 01 

i4 

The left-hand sides of the tetrahedron equations. 

where  we have  used the n o t a t i o n  (3). It  satisfies the ver tex- type  t e t r a h e d r o n  

e q u a t i o n  

2 
{k~}. 

i =  1,.... 6 

U ~ k l ' k 2 " k 3 R ( U l ,  U4, t/ ~jlk4k5 R(t./1, u2 ,  31il.i2. i3 5 1 k l i a i 5  

" ~hAk6 R ( u 3 ,  / ' /5,  " ~J3JsJ6 
X R( / , /2~ / , /4 ,  ~61k2k,~i6 ~61k3ksk6 

= r 
{kd, 

i=l,. . . ,6 

\k3"ks'k6 R(tt2, u4, xk2k4J6 R(u3, Us, U6)i3, i5, i6 U6) i2i4k6 

,, ~J, hJ3 (30) ~klJ4J5 R ( u ~  u~ ,  ~ 3 ,  klk2k 3 • R(u  I , u4, U S l i l k 4 k 5  , _ 
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J3 
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03 

= I 

I I 

k4 ' 

O~ 

: i 
i I 
i i 

2--~ _j 

I 

ks  

Fig. 4. 

j 6  

i,I 

The Right-hand sides of the tetrahedron equations. 

where 

x, x', x,3x._, xr x .  x';' 
U I  t ' U ~  ~ - -  bl 3 = - =  .mr 

(.OX 2 (-0X 2 - (OXI4X23 OJX~ ~ X 3 (-OX 2 

I I If  II . I  . I l l  I I !  I t  l i t  

X13X24 X I 3 X 2 4  X4 X 13X24 X4 X4 
I'/4 = ~ t - -  i t  n ' U5 ~ -"7" ~ m m ' g 6  = ~ X n'~ 

(DXI4X23 o (DXI4X23 X 3 OJXI4X23 X 3 X 3 

(31) 

The other constraints on the spectra will be discussed in Section 5. When 
u =  v, z~ ~ ~ ,  zz - -*  O, which corresponds to the case of 0~ = 03, 02 = 0  (see 
the following section), we have tha(  9~ 

R J, J-'4~, ,2 i, = ( - -  ) '~ +j~ 5j ,  .j~ 
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from relation (29). We can think of each side of the cube-type tetrahedron 
equation as the partition function of the four skewed cubes joined together 
with a common interior spin d, which forms a rhombic dodecahedron. In 
this way, we can express both types of tetrahedron equations graphically as 
in Figs. 3 and 4. These figures give also the duality between the cube-type 
and vertex-type tetrahedron equations. 

Jtm3 has the symmetry property The weight function R ;ti.,;3 

R j:, + Nj: • Jvj, + N _ R j, J:J3 (32) 
+ N i 2  ++. N i 3  +_ N - -  - -  i I i2i3 

When N = 2, it relates to the sublattice symmetry properties 

W ( - a  l e, f ,  g l - b ,  - c ,  - d  l h ) =  W(a  l - e ,  - f ,  - g  l b, c, d l - h )  

= W(a  I e fg  I bcd l  h) (33) 

proposed by Baxter ~3) for the Zamolodchikov model. Notice that the spins 
a, b ..... h take the values -I- 1 in the above relation. Indeed, Sergeev et al. ~29) 
noticed that the weight function of the Baxter-Bazhanov model is almost 
the vertex weight function when they proved the tetrahedron equation of 
this model. It is interesting that the o9//-'-factors in the weight function of the 
Baxter-Bazhanov model can be written into the form (o9U2) J,J2+J2J3+J,J,. 
Then the three-dimensional vertex model is constructed in correspondence 
to the Baxter-Bazhanov model. 

4. S P E C T R A L  P A R A M E T R I Z A T I O N  BY U S I N G  S P H E R I C A L  
T R I G O N O M E T R Y  

In this section we parametrize the spectra of the Boltzmann weights as 
the dihedral angles between the "rapidity planes" passing the cubes, similar 
to the Zamolodchikov model, tl~ Following the methods in refs. 10 and 9, 
we introduce a large sphere (its radius is much larger than the size of the 
tetrahedra) with a point near the vertices as the center. Consider four great 
circles on the sphere corresponding to the four "would planes. ''(~) A frag- 
ment of the steriographic projection of this sphere is shown in Fig. 5. Note 
that our angles differ from Zamolodchikov's. Define 

Ii = 123/N,  12 = l l 3 / N ,  13 = ll,_/N 

l', = 145/N, l" = 1,5/N, 1'3 = l l4 /N 

l'~ = 146/N, l~ = 126/N, l~ = 12,,/N 

l'(' = 156/N, l~' = 136/N , l~' = 135/N 

(34) 



3D Vertex Model from Baxter-Bazhanov Model 647 

Fig. 5. 

04 

05 

2 

A fragment of the stereographic projection of the sphere with four great circles. 

where  1 o. ( i , j =  1 ..... 6, i < j )  denotes  the length  of  the segment  be tween  i 
and  j a long  the circle. T h e n  we can  wri te  

X 1 : C I / S  1 , 

x3 = exp( - -  il2) s3/c3, 

xl2 = 1/(clsl), 

xl4 = exp[  i(/3 - / ) ]  s2/(SlS3), 

x24 = exp( - il) c2/(s3 el ), 

X 2 ~ (D -- 1/2S 1 / r  

X 4 = CO - - I /2  exp( --  ilz) c3/s3 

X13 =exp[ i ( l - - l z )]c2/ (c3s l )  (35) 

x23 = co-  1/2 exp[  i(ll -- l) ] sff(cl Ca) 

x34 = exp( --  il2)/(c3s3) 

l =  (112 + ll3 + 123)/(2N), 

l" = (124 + 126 + 146)/(2N), 

l' =(114+ll5+145)1(2N) 

l'=(135+136-1-156)1(2N) 
(36) 

c'l = cl = [ c o s ( 0 1 / 2 ) ]  l/N, 

C'( ----.C2 = [COS(02/2)]  I/N, 

C';' = C 3 = [COS(03/2) ] I/N, 

C~ = C~ = [COS(0412)]  l/N, 

c ~ ' =  c~ = [ c o s ( 0 5 / 2 ) ]  l/N, 

c~' = c~ = [ c o s ( 0 d 2 ) ]  ~m, 

s'l = s l  = [ s in (01 /2 ) ]  l/u 

s~' = s2 = [ s in (02 /2 ) ]  l/U 

S~" = S3 = [ s in (03 /2 ) ]  I/U 

S_4 = S" = [ s in (04 /2 ) ]  t/u 

S~' = S  3' = [ s in (05 /2 ) ]  t/u 

sg' = s~ = [ s in (06 /2 ) ]  l/U 

(37) 

The  pr imes  added  to the x 's  are co r r e spond  to those of  the ci, si, l~, l, wi th 
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Here the angle variable 0l, 02 ..... 06 are chosen so that they correspond 
to the six spaces of the vertex-type tetrahedron equation, respectively, and 
differ from those used by Kashaev et aL I10) The parameters v~, rE, v3, v4 in 
Eq. (2) can be denoted by 

1) 1 : o ) - - l e i h s  S J" " I 31tclc3), 

v3 = e-e"s,  s3/(Cl c3), 

v2 = co-l/2ee'-sl c3/( cl s3) 

v4 = co-I/2e-il2s I c3/(c I $3) 

which is just relation (2.13) provided by Bazhanov and Baxter ~9) when we 
make the substitutions 0~ ~ 02, 02 --, n - 03, 03 ~ 0~. 

In this way, we have 

U~=CO--l/2[ctg(Oi/2)]2/N, i =  1, 2 ..... 6 (38) 

The vertex-type tetrahedron equation has the form (see Figs. 3 and 4) 

k l , k ~ , k 3  0 ~Jlk4k5 
E R(01 ,02 ,  03)i i , i2?i3 R(Ol, 04, 51k ,  i, is 

{ki}, 
iffi I,..., 6 

X R(02, 0- 0 ~J2J4k6 R:O 05 , A ~J3J5J6 
~ 61k2k4i6 t 3~ V 6 1 k 3 k s k 6  

= ~,, R(Oa, Os'O6)k;.',~;(~R(02 ,av4, ~61i2i4k6~Q '~k2k4J6 
{ki}, 

i= I,..., 6 

R(OI, 0 0 ~k,J44 R(Ol 07, 0 ~J,J:J3 4~ 51i lk4k 5 ~ - 31 klk2k3 

with the angles satisfying the condition 

(39) 

sin 01 + 02 + 03 sin -- 01 "t- 02 "]- 03 --03 + 05 + 06 sin 03 + 05-- 06] 
2 2 sin 2 2 

1/2 

[sin 0~ - 0 2  + 03 
i 

L 2 
sin 0~ + 0_, - 03 sin 03 - 05 + 06 sin 03 + 05 + 06] 1/2 

2 2 2 J 

= sin 03 [ sin 02 + 0 4 - - 0 6  �9 -- 02 "~- 04 "~- 06) 1/2 
2 sm 2 (40) 

(see Fig. 5). This relation can be obtained from Eq. (3.2) of ref. 1 by a 
proper choice of the angles: 02 ~ 03, 03 ~ n -  02, 05 ~ 06, 06 ~ n -  05. 
There are six summation indices in the vertex-type tetrahedron equation, 
and only one in the cube-type tetrahedron equation. They are consistent 
due to the constraints i l - j l  = J a - i a = i 3 - J 3  in the vertex-type weight 
function R J)4-% It is easy to interpret the duality between the N ~4 tl t213 " 
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cube-type tetrahedron equation (8) and the N 12 vertex-type tetrahedron 
equation (39) by taking account of the symmetry properties (15) and (16). 
The vertex-type weight function also has the property 

R(01, 02, 03)Jll~/~ = R(01,02, 03)~i~2j3 (41) 

It corresponds to the "diagonal reversal" property 

W( a I e f  g I bcd [ h) = W( h I bcd l e f  g I a) (42) 

given by Baxter t3) for the Zamolodchikov model when N = 2 .  The other 
properties of the weight functions will be given in the following section. The 
angle variable 01, 02 ..... 0 6 relate the six spaces in which the vertex-type 
tetrahedron equation is defined. 

5. S Y M M E T R Y  PROPERTIES OF THE VERTEX-TYPE 
WEIGHT FUNCTION 

In this section first we consider the additional constraints imposed on 
the tetrahedron equations given by Kashaev e t  al . ,  from the point of view 
of the above angle variables. Then we find that the Boltzmann weights are 
symmetrical under the transformations of the group G consisting of various 
rotations, reflections, and their combinations of the cube with respect to 
the vertex-type weight functions. It can be checked easily that the angle 
parametrization satisfies the condition which ensures that all the similarity 
transformation factors tl~ cancel each other. In terms of the "coordinated" 
parameters the four additional constraints have the form 

t I I  . o !  l i t  

X23 X4 X24 ,X 2 XI3 X' I Xt~4 X 1 
co 1, 1 

l . I t  . l i t  . I I  I I I  

X 3 X24 X2 X24 Xl XI14 .X I XI4 

l IU  t l i t  

XI4 X4 X'(4 X 4 X13 X3 X'~3 X 2 
= l ,  1 

I I  I l l  n I l l  

X 4 X t l 4  X 4 X24 X3 Xtl3 X I X23 

(43) 

By taking account of the expressions (28)-(30), we can change the above 
constraints int9 

ll,_ + 124 =/14, 113 + 135 = 115 

123 + 136 = 126, /45 + 156 =/46 
(44) 

As shown in Fig. 5, they hold naturally. We guess that a similar geometric 
interpretation exists for the IRC model with the modified tetrahedron 
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ei i2 
J3 

jl 
�9 b 01 [ h 

-~ ' x  r"-f ! , ' ~d  

- ' , . a n  [ ""J e ~ _  i2 

| 

Fig. 6. The transformation ( corresponding to the three-dimensional star-star relation. 

equation.t~6,~s) F rom refs. 9 and 11 we know that the three-dimensional 
star-star relation means the transformation ~: 

W(a I efg f bcdl h) r W(f[  adb [ hge I c) (45) 

with 

_x3 e ,x2  x4 ~, x~ x4 ~, xl x3 ~, x2 (46) 
X I X 3  ' X 2  COX4 ~ X 1 COX3 ~ (-OX2 O')X4 

In terms of  the vertex form the star-star  relation can be expressed as 

-J3 - j,_i~ (47) R(81, 8,,_ 83):)~-':3,.,2,3 = R ( ~ z - 8 3 ,  n-87,_  81)--i3--i2Jl 
as in Fig. 6. Under  the transformations r and p of  the generating elements 
of  the group G the weight functions change as (~6) 

W(a [ efg I bcdl h) ~, W(a [feg [ cbdl h) (48) 

with 

--X2 ( r ) X3 --X4 +_~ X3 
(49) 

X 1 O")X4 X 1 (.OX 2 

and 

W(ale fg lbcd lh )  ?, W ( g l c a b l f h e l d )  (50) 

with 

--X3 P I, X13X4, X3 P ~ --,O')X23X4 X4 P ) X23, XI4X23 p ,  _x2 (51) 

Xl X3XI4 X2 X3X24 X2 X24 XI3X24 X1 
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i3 il  

O3 I �9 g b . 
32 . .  r~ a I ~ 32 

" .  ~ t I ' - . , ~  ~ i I 

T j, 
ja t 

Fig. 7. The transformation r of the weight function. 

So their vertex forms are 

R ( O i ,  02,  ~ ~A.6.6 = R ( 0 3  0 , ,  0 ~J3J,_.it 
t z 3 1  i l i 2 i 3  ~ _ I I  i3 i2 i l  

(52) 

for the transformation r, as in Fig. 7, and 

R ( O i ,  0 , ,  Jd2J3 = R ~ n - -  0 ~ -i,_:~-J3 _ 03)ili2i 3 ( - - 0 2 ,  01 , 31--j2il--i 3 (53) 

for transformation p, as in Fig. 8. The angles 01,02 ..... 06 can be interpreted 
as the dihedral angles between the rapidity planes connected with the 
cubes. With respect of  the vertex model, these angles can be regarded as the 
parameters related to the spaces on which the vertex type tetrahedron 
equation is defined. So these parameters and spin variables should be 
transformd "regularly" under the symmetry group G. This is entirely con- 
sistent with the above equations. The geometric considerations are shown 
in Figs. 6-8. The above two relations are the "elementary" relations. The 

i3 --  i3 

J2 _ g ~  J l  a 

i i~ -- ---- r - 2 .... "-~' 

i e  ] c j~_0  3 il 

j3 P - J3 $ 

Fig. 8. The transformation p of the weight function. 
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other relations of the transformations of G can be obtained from them. It 
can be chcked easily that the star-star relation (47) can be obtained from 
relations (52) and (53). 

6. S U M M A R Y  

We obtained the duality between the cube-type weight functions and 
the vertex-type weight functions explicitly for the three-dimensional 
Baxter-Bazhanov model and found that the Boltzmann weight of the 
model depends on the four spin variables which are the linear combina- 
tions of the spins located on the corner sites of the cube. We interpreted the 
vertex-type weight function R(O], 0 , ,  0 ~J,J, J3 as the Boltzmann weight of a _ 31 il i2i3 

three-dimensional vertex model, and the spectra O~, 02, 03 were connected 
to the "lines" 1, 2, and 3 (see Fig. 2). In this way, we were able to write 
the symmetrical relations of the vertex-type Boltzmann weights in terms of 
the angles. We gave symmetry properties for the weight functions of the 
Baxter-Bazhanov model which are important for constructing the vertex 
model and for obtaining the duality between the two kinds of tetrahedron 
equations. One of the symmetry properties of the three-dimensional vertex 
model is related to the sublattice symmetry properties proposed by 
Baxter r when N = 2. The angles 01,02, 03 are the dihedral angles between 
the rapidity planes connected with the cubes. Then the weight functions 
should be transformed "regularly" under the actions of the symmetry group 
G which consists of various rotations, reflections, and their combinations of 
the cube. The relations (47), (52), and (3) are entirely consistent with this 
(see Figs. 6-8). The angles 01, 02, 03, 04, 05, 06 with relation (40) can be 
interpreted as the spectra related to the six spaces in which the vertex 
tetrahadron equation (39) is defined (see Figs. 3 and 4). When we set 
i3 = J3 -= 0 and take appropriate spectral parameters, the Boltzmann weight 
of the vertex model proposed in ref. 22 can be obtained from the weight 
function (24) with the spin assignments, t23~ Here we have 16 nonzero 
weights R(O~, ,o o ~J, J2J3 for N =  2. So it is an interesting question to find t " 2 '  t " 3 1  i l i2i3 

the connection between it and the solutions in ref. 18. Since the IRC model 
proposed in refs. 16 and 28 has similar spin assignments in the weight func- 
tion to those for the Baxter-Bazhanov model, a new three-dimensional 
vertex model also can be constructed t29~ as a duality of the new series of 
the three-dimensional integrable lattice models with N colors, where the 
weight functions satisfy the modified vertex-type tetrahedron equation. We 
guess that a geometric interpretation exists also for the constraint condi- 
tions of the modified tetrahedron equation as a kind of deformation of 
those in the Baxter-Nazhanov model. 
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The three-dimensional Baxter-Bazhanov model was built through the 
study of the chiral Potts model, which is a generalization of the free-fer- 
mion model owing to the work of Baxter et aU 3~ In this formulation, their 
work earlier provided the two-layer Baxter-Bazhanov model. The chiral 
Potts model can be regarded as a descendant of the six-vertex model in two 
dimensions, c31-33~ This relation appears first, implicitly, in the Bethe-ansatz 
solution of Albertini et aU 34) and the conjectured equation was derived by 
Bazhanov and Stroganov. t33) In ref. 35, the chiral Potts model is discussed 
in detail and the funtional relations of the transfer matrices are established, 
which is the starting point of the most recent calculations in the chiral 
Potts model. Recently, the hidden symmetries in the six-vertex model 
and the correlation function ~36' 377 of the X X Z  chain t3s) have been dis- 
cussed. ~39"4~ Then there are the interesting problems of the correlation 
function and calculating the free energy for this 3D vertex model by using 
the duality discussed above, as by Baxter and Bazhanov t-~'9) for the 
Zamolodchikovmodel and the IRC model. The phase transitions of lattice 
models of interacting systems are also interesting subjects in statistical 
mechanics. The Properties of the phase transitions of the X X Z  chain and 
the X Y Z  chain have been studied by various methods~3S" 41' 42): the exact 
solutions, the approximate approaches by the use of the Jordan-Wigner 
transformation, ~43) and the free Fermi system. (44-47) We hope that the 
discussions in this paper will be useful in studying the critical behaviors of 
lattice models of interacting systems in three dimensionsJ 49) But it must be 
noted that the weights of the Baxter-Bazhanov model are not real and 
positive, apart from the original chiral Potts model (two-layer case), nor is 
there a Hermitian associated quantum model beyond the chain case, as in 
the very first work by Au-Yang eta/., (49) which is a major shortcoming of 
the Zamolodchikov-Baxter-Bazhanov model. 
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